CS 188: Artificial Intelligence Spring 2010

Lecture 8: MEU / Utilities 2/11/2010

Pieter Abbeel - UC Berkeley
Many slides over the course adapted from Dan Klein

Announcements

- W2 is due today (lecture or drop box)
- P2 is out and due on 2/18

Expectimax Search Trees

- What if we don't know what the result of an action will be? E.g.,
- In solitaire, next card is unknown
- In minesweeper, mine locations
- In pacman, the ghosts act randomly
- Can do expectimax search
- Chance nodes, like min nodes, except the outcome is uncertain
- Calculate expected utilities
- Max nodes as in minimax search
- Chance nodes take average (expectation) of value of children
- Later, we'll learn how to formalize
 the underlying problem as a Markov Decision Process

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility: an agent should choose the action which maximizes its expected utility, given its knowledge
- General principle for decision making
- Often taken as the definition of rationality
- We'll see this idea over and over in this course!
- Let's decompress this definition...
- Probability --- Expectation --- Utility

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: traffic on freeway? ©
- Random variable: $\mathrm{T}=$ amount of traffic $_$
- Outcomes: T in \{none, light, heavy\} a

- Some laws of probability (more later):
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
- $P(T=$ heavy $)=0.20 \mid P(T=$ heavy \mid Hour $=8 a m)=0.60$
- We'll talk about methods for reasohing and updating probabilities later

What are Probabilities?

- Objectivist / frequentist answer:
- Averages over repeated experiments
- E.g. empirically estimating $P($ rain) from historical observation
- Assertion about how future experiments will go (in the limit)
- New evidence changes the reference class
- Makes one think of inherently random events, like rolling dice ©
- Subjectivist / Bayesian answer:
- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
\rightarrow E.g. pacman's belief that the ghost will turn left, given the state
- Often learn probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Uncertainty Everywhere

- Not just for games of chance!
- I'm sick: will I sneeze this minute?
- Email contains "FREE!": is it spam? \&
- Tooth hurts: have cavity?
- 60 min enough to get to the airport?
- Robot rotated wheel three times, how far did it advance?
- Safe to cross street? (Look both ways!)
- Sources of uncertainty in random variables:
\longrightarrow Inherently random process (dice, etc)
\rightarrow - Insufficient or weak evidence
- Ignorance of underlying processes
- Unmodeled variables
- The world's just noisy - it doesn't behave according to plan!

Reminder: Expectations

- We can define function $f(X)$ of a random variable X

The expected value of a function is its average value, weighted by the probability distribution over inputs

- Example: How long to get to the airport?
- Length of driving time as a function of traffic:

$$
L(\text { none })=20, L(\text { light })=30, L(\text { heavy })=60
$$

\qquad

- What is my expected driving time?
- Notation: E[L(T)]
- Remember, $P(T)=\{$ none: 0.25 , light: 0.5 , heavy: 0.25$\}$
$=\underline{E[L(T)}]=\underbrace{L(\text { none })} * \underbrace{P(\text { none })}+\underbrace{L(\text { light })}_{30} \underbrace{P(\text { light })}_{.5}+\underbrace{L(\text { heavy })}_{60} \underbrace{P(\text { heavy })}_{.25}$

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1) \propto
- Utilities summarize the agent's goals
- Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)
- In general, we hard-wire utilities and let actions emerge (why don't we let agents decide their own utilities?)
- More on utilities soon...

Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
- Model could be a simple uniform distribution (roll a die)
- Model could be sophisticated and require a great deal of computation
- We have a node for every outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!
- For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes

Having a probabilistic belief about an agent's action does not mean that agent is flipping any coins!

Expectimax Search

- Chance nodes
- Chance nodes are like min nodes, except the outcome is uncertain
- Calculate expected utilities
- Chance nodes average successor values (weighted)
- Each chance node has a probability distribution over its outcomes (called a model)
- For now, assume we're given the model
- Utilities for terminal states
- Static evaluation functions give us limited-depth search

Expectimax Pseudocode

def value(s)
if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)
\rightarrow def maxValue(s)
values = [value(s') for s' in successors(s)]
return max(values)

\sim def expValue(s)
$\left[\begin{array}{l}\text { values }=\left[\text { value(s') for } s^{\prime} \text { in successors(s) }\right] \\ \text { weights }=[\text { probability(s, s') for s' in successors(s)] } \\ \text { return expectation(values, weights) }\end{array}\right.$

Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
- Environment is an extra player that moves after each agent
- Chance nodes take expectations, otherwise like minimax

ExpectiMinimax-Value(state):

if state is a MAX node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-VALUE of SUCCESsORS(state)
if state is a chance node then
return average of ExpectiMinimax-VALUE of SuCCEssors(state)

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
- Backgammon ≈ 20 legal moves
- Depth $4=20 \times(21 \times 20)^{3} 1.2 \times 10^{9}$
- As depth increases, probability of reaching a given node shrinks
- So value of lookahead is diminished
- So limiting depth is less damaging
- But pruning is less possible...
- TDGammon uses depth-2search +
$\rightarrow \quad$ very good eval function +

\rightarrow reinforcement learning: worldchampion level play

Maximum Expected Utility

- Principle of maximum expected utility:
- A rational agent should choose the action which maximizes its expected utility, given its knowledge
- Questions:
\rightarrow - Where do utilities come from?
\Rightarrow How do we know such utilities even exist?
\longrightarrow - Why are we taking expectations of utilities (not, e.g. minimax)?
\rightarrow What if our behavior can't be described by utilities?

Utilities: Unknown Outcomes

Preferences

- An agent chooses among:
- Prizes A, (B), etc.
- Lotteries: situations with uncertain prizes
$\rightarrow L=[p, A ;(1-p), B]$

- Notation:
$\left[\begin{array}{ll}\longrightarrow A \succ B & A \text { preferred over } B \\ \longrightarrow A \sim B & \text { indifference between } A \text { and } B \\ \rightarrow A \succeq B & B \text { not preferred over } A\end{array}\right.$

Rational Preferences

- We want some constraints o preferences before we call them rational

- For example: an agent with intransitive preferences can be induced to give away all of its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If $C>A$, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
- The axioms of rationality:
\rightarrow Orderability

$$
(\underline{A \succ B)} \vee(B \succ A) \vee(A \sim B)
$$

\rightarrow Transitivity

$$
(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)
$$

\rightarrow Continuity
$A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability
$A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$ Monotonicity

$\left(\begin{array}{c}p \geq q) \Leftrightarrow[p, A ; 1-p, B] \\ {[\underline{~ q, ~ A ; ~ 1-q, B])}]}\end{array}\right.$

- Theorem: Rational preferees, \quad mply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
- [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function $\underset{S}{ }$ such that:

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEUK 2 without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe

Utility Scales

- Normalized utilities: $\mu_{+}=1.0, u_{-}=0.0 \leftrightarrow \infty$
- Micromorts: one-millionth chance of death, useful for paying to areduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation
- $U^{\prime}(x)=\underline{k}_{1} U(x)+\underline{k_{2}} \quad$ where $k_{1}>0$
- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery L_{p} between
- "best possible prize" \underline{u}_{+}with probability p
- "worst possible catastrophe" u_ with probability 1-p
$[p, u+,(1 \cdot p), u-]$
Adjust lottery probability p until $A \sim L_{p}$
\rightarrow Resulting p is a utility in $[0,1]$
pay $\mathbf{\$ 3 0}$

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery $L=[p, \$ X ;(1-p), \$ Y]$
- The expected monetary value $\operatorname{EMV}(L)$ is $p^{*} X+(1-p)^{*} Y=1000$

- Typically, U(L) < U(EMV(L)): why?
- In this sense, people are risk-averse
- When deep in debt, we are risk-prone \propto

Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]
- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery
- \$400 for most people
- Difference of $\$ 100$ is the insurance premium
- There's an insurance industry because people will pay to reduce their risk
- If everyone were risk-neutral, no insurance needed!

Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

You own a car. Your lottery:
$\mathrm{L}_{Y}=[0.8, \$ 0 ; 0.2,-\$ 200]$
i.e., 20% chance of crashing

You do not want -\$200!

Amount	Your Utility U_{Y}
$\$ 0$	0
$-\$ 50$	-150
$-\$ 200$	-1000

$U_{Y}\left(L_{Y}\right)=0.2^{*} U_{Y}(-\$ 200)=-200$
$U_{Y}(-\$ 50)=-150$

Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

You own a car. Your lottery:
$\mathrm{L}_{Y}=[0.8, \$ 0 ; 0.2,-\$ 200]$
i.e., 20% chance of crashing

You do not want -\$200!
$U_{Y}\left(L_{Y}\right)=0.2^{*} U_{Y}(-\$ 200)=-200$
$U_{Y}(-\$ 50)=-150$

Insurance company buys risk:
$L_{1}=[0.8, \$ 50 ; 0.2,-\$ 150]$
i.e., $\$ 50$ revenue + your L_{Y}

Insurer is risk-neutral:
$\mathrm{U}(\mathrm{L})=\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$

$$
\begin{aligned}
U_{1}\left(L_{1}\right) & =U\left(0.8^{*} 50+0.2^{*}(-150)\right) \\
& =U(\$ 10)>U(\$ 0)
\end{aligned}
$$

Example: Human Rationality?

- Famous example of Allais (1953)
- A: [0.8,\$4k; 0.2,\$0]
- B: [1.0,\$3k; 0.0,\$0]
- C: [0.2,\$4k; 0.8,\$0]
- D: [0.25,\$3k; 0.75,\$0]
- Most people prefer B > A, C > D
- But if $U(\$ 0)=0$, then
- $\mathrm{B}>\mathrm{A} \Rightarrow \mathrm{U}(\$ 3 \mathrm{k})>0.8 \mathrm{U}(\$ 4 \mathrm{k})$
- $\mathrm{C}>\mathrm{D} \Rightarrow 0.8 \mathrm{U}(\$ 4 \mathrm{k})>\mathrm{U}(\$ 3 \mathrm{k})$

